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Chapter 1

Introduction

1.1 Background

Analysis of film cooling in rocket nozzles by computational fluid dynamics (CFD)
computer codes is desirable for two reasons. First, it allows prediction of resulting flow
fields within the rocket nozzle, in particular the interaction of the coolant boundary
layer with the main flow. This facilitates evaluation of potential cooling configurations
with regard to total thrust, etc., before construction and testing of any prototype.
Secondly, CFD simulation of film cooling allows for assessment of the effectiveness of
the proposed cooling in limiting nozzle wall temperature rises. This latter objective
is the focus of the current work.

A NASA code is available for the analysis of CFD processes. The FDNS (Finite
Difference Navier Stokes) code was commissioned by MSFC and was authored by
SECA, Inc. in 1990. The FDNS code uses a central differencing scheme, coupled
with artificial damping to capture shock waves, to solve for the heat, mass, and
momentum conservation within an arbitrary geometrical domain. The code uses
either a “standard” or “extended” k-e¢ turbulence model with an implementation of
Launder and Spalding-like [1}wall functions for modeling of solid wall boundaries.
Furthermore, the code allows for either equilibrium or finite-rate chemical reactions.

A major re-write of the code was performed over 1991-92 by Dr. Y. S. Chen, now
of Engineering Sciences Incorporated (ESI). The resulting code is streamlined, has
3-D capability, but is limited to finite-rate chemical reactions. This code also has
three turbulence models: standard k-¢, “extended” k-¢, and a low Reynolds number
k-€.

During the summer of 1991, Keith Woodbury of The University of Alabama per-
formed computations using the NASA code FDNS for high-speed flow of air over an
isothermal flat plate . The focus of his analysis was on the computed heat flux from
the wall. The results showed that the FDNS code predicted heat fluxes about an
order of magnitude lower than those measured under similar conditions in a shock
tunnel. The explanation for the discrepancy is two-fold. First, the k-e turbulence
model used in FDNS does not account for the retarded velocity of the fluid in the
near-wall region. Secondly, the particular form of the wall function used as a bound-
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Task One. Modify the boundary wall functions in the FDNS
code to include either an implementation of either a
Reynolds Analogy-based method or the Jones-Whitelaw
wall function. This task addresses the code's deficiency

in modeling the viscous heating near the wall.
Task Two. Calibrate the FDNS code against published experimental

data. Specifically, the code will be used to compute the

helium film cooling from a wall jet.
Task Three. Use the modified code to compute the flow of hot gases

through a nozzle. For this case, the nozzle geometry
currently planned for the 40K subscale nozzle test is to
be used. The gas composition will be frozen, i.e., non-
reacting, and the film coolant used will be ambient hy-
drogen.

Table 1.1: Tasks to be completed under project

ary condition for the energy equation does not adequately account for the effect of
viscous heating in the near-wall region.

1.2 Project Plan

The desired objective is to use the&“DNS code to predict wall heat fluxes or wall
temperatures in rocket nozzles.] As prior work [2] has revealed that the FDNS code is
deficient in the thermal modeling of boundary conditions, the first step is to correct
these deficiencies in the FDNS code. Next, these changes must be tested against
available data. Finally, the code will be used to model film cooling of a particular
rocket nozzle. Table 1.1 summarizes the tasks to be completed under this project.

The modifications to the FDNS code will be in the handling of the thermal bound-
ary condition at the solid wall. The goal is to introduce as few changes as possible into
the FDNS code, but enough to bring predictions from FDNS in line with available
data. Previous work {2] demonstrated that a simplistic Reynolds’ Analogy brought
the FDNS code predictions for wall heat flux into reasonable agreement with data for
the case of flow over an isothermal plate. Such a modification will be introduced in
the wall functions in the FDNS code, and it will be determined if this alteration is
adequate in Task 2. If not, an alternate form of the wall functions (due to Jones and
Whitelaw) has been reported to yield good estimates for the wall jet problem [3] and
this will be implemented and verified in Task 2.

Verification of the FDNS code modifications will be accomplished by comparing
the code predictions to the experimental data of Holden [4]. The basis for comparison
will be the predicted wall heat flux and the wall static pressure. Specifically, Holden’s
case number 45 will be considered. Case 43 is for supersonic injection of Helium
coolant (To = 530 R, M = 3) parallel and into the flow of air at the nominal conditions
To = 2200 R and Mo, = 6.4 via a wall jet.

The code will ultimately be used to compute the flow through a rocket nozzle,



with supersonic film coolant injection. The geometry of the nozzle, gas composition,
and coolant injection scheme to be used in the computation will be that of the P&W
40K Subscale Nozzle. This information was disseminated at the CFD Consortium in
Propulsion Technology meeting of August 1, 1991.

1.3 Supplemental Work

As a supplement to the Task 2 objective of FDNS code verification, the code will
be used to compute the flow of hot exhaust gases through a 40K combustor. This
combustor is the same as the configuration tested by Dexter [5] at MSFC. This article
was fitted with a calorimeter jacket, and the data from Dexter was obtained for com-
parison. This provides a measure of the suitability of the code for use in combusting,
accelerating flows.

As a supplement of Task 3, a novel approach to solution of the conjugate heat
transfer problem will be used. This approach provides a simple, iterative method
which can be applied when adequate knowledge of the backside cooling is available.



Chapter 2

Task 1: Wall Functions

Task 1 of the project was completed in August, 1992. The then-current version of
the code was obtained from Dr. Y. S. Chen of ESI on August 3, 1992. This version
contained a heat flux wall function similar to the one recommended by Woodbury (2].
This function was modified to make it conform to the Reynolds-Analogy desired for
this project. ' :

The current formulation of the code, the wall function for the energy equation has
a form

qu = (hw = hp = Pre(up — u0)*/2)(u/up) (2.1)

where h,, and h, are the enthalpies of the wall and the adjacent point away from the
wall, respectively; u,, and u, are the velocities, 7, is the wall shear stress, and Pry 1s
the turbulent Prandtl number, taken to be Pr, = 0.90.

Note that this wall function is similar to the Reynold’s Analogy model proposed in
Reference [2]. That function follows from the definition of the heat transfer coefficient,
hony for a compressible boundary layer (Shapiro [6], page 1100)

qQuw = hconv(Taw - Tw)

where T, is the adiabatic wall temperature, and T, is the actual wall temperature.
If the adiabatic wall temperature (given by Shapiro [6], page 1099) is

Tow = Too + RU% /2/c,

which defines the recovery factor, R. (R = 0.89 for air.) Then, with the Reynolds
Analogy (as suggested by Shapiro ([6], page 1100), and verified experimentally by
Holden ([7), Figure 12a}, expressed as

Cj Tw hconu
- = ~Cy= .
2 pUZ% cppUso
the heat transfer may be inferred based on the wall friction as

TwCp

Uso

o= (T, —T.)+ TQEUOOR.
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Or,

T U?
o= L (he L _hy .
q U( +R2 ) (2.2)

oo
where h is the enthalpy, not the heat transfer coefficient. Comparing Equation 2.1
with Equation 2.2, and recognizing that Pr, is numerically equal to R, it can be seen
that the expressions are substantially the same.

The wall functions are implemented using a dimensionless distance y*. This
distance is defined in terms of the resulting shear stress at the wallas y* = y\/7u/p/v.
The wall functions implemented in this version are claimed to be accurate over a range
of 60 < y* < 700.



Chapter 3

Task 2: Verification

3.1 Background

Task 2 was completed in September, 1992. This task involved using the FDNS code
to predict the heat flux froma M = 3 Helium wall jet. The actual case is documented
in the experimental work of Holden [4].

In Holden’s report, specific information about the actual profile conditions (ve-
locity and temperature) at the jet injection point were not available. This led to
a parametric study in the present investigation to determine the effects of various
assumptions about these conditions.

This effort is made to study the effects of inlet boundary conditions of the injection
on the wall heat transfer downstream of the injection slot. Results that follow are all
for test condition “Run 45” one of the test cases in Holden’s report[4]. Computations
are carried out for a grid containing 121 by 41 mesh points. Grid spacing has been
adjusted to ensure convergent solutions and desired dimensionless normal distance
y* within the range of 60 < y* < 700, as is suggested by the author of the code, Dr.
Y. S. Chen.

In all cases, turbulence quantities k and € are assumed to be uniform at the exit
of the injection slot, and are given by '

k = 0.001U7,; = Constant

r

_ Cu(k)*?
€ 0.03X,e;

= Constant

3.2 Inlet Profile Effects

Fig. 3.1 shows the effects of the inlet temperature profile on the heat transfer down-
stream of the slot. In the figure, Holden’s data are compared to computed results
from FDNS for both a constant inlet temperature and a turbulent inlet temperature
profile. In the computed results, the velocity profile at the inlet was taken as uni-
form. The turbulent inlet temperature profile was obtained from a contour map of

computed results for analysis of the injection nozzle alone. These injection nozzle
8
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computations were performed by Dr. Y. S. Chen[8]. This profile was approximated
by curve fit as

y -0.3831
T(y) = 0.321T,; [m}

This figure shows that the effect of temperature profile on the predicted wall heat
flux is limited to a distance of 2 inches (about 30 - 35 times the slot height) from the
slot. In this region, Chen’s profile predicts a higher heat flux than the experimental
result.

Fig. 3.2 incorporates Chen’s results for temperature and velocity at the injection
nozzle. The result, denoted 8.28 in the figure, underpredicts the heat flux over most
of the flow region.

Fig. 3.3 show the effect of the laminar versus turbulent velocity profiles on the
downstream wall heat Aux. For these calculations, the inlet temperature profile was
assumed uniform. In the figure, the results corresponding to the turbulent veloc-
ity profile are denoted as 8.18, and those for the laminar assumption as 8.25. The
turbulent profile again was assumed as the 1/7 power law, and a simple parabolic
assumption was made for the laminar profile:

2
3 y
Uly) = =(4967.77) | — =
)= Sus6) |
The laminar profile results in a very strong decrease, then an increase, in heat flux
over a short distance. This confirms that the assumption of a laminar velocity profile
at the slot inlet is clearly unreasonable.

Fig. 3.4 shows the effect of varying the inlet velocity profile. In this figure, both
computations use Chen's temperature profile, but one (denoted 8.16) uses uniform
velocity profile, while the other (denoted 8.18) uses an approximate turbulent profile
(the 1/7 power law):

v 17
Uly) = 4967.77 | 2=
It can be seen from this figurethat the turbulent velocity profile does not result in a
better prediction than the uniform one.

3.3 Additional Verification

3.3.1 40K Combustor Data

Further measures were taken to test the usefulness of the FDNS code for determi-
nation of wall heat fluxes in the presence of a combusting, accelerating flow. A 40K
calorimeter combustor, manufactured by Pratt and Whitney, had been hot-fired at
VMSFC and data from one of these firings was used to test the computer code. A
second benefit of this exercise is to determine the conditions of the hot gas which will
be entering the subscale nozzle.

10
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O/F 6.00 75 4.0
P, (PSIA) | 1775 | 1750 | 1750

T (R) 6422 | 6629 | 5392
5 (slug/ft®) | 0.01055 | 0.01164 | 0.00918
~ 1.1442 | 1.1336 | 1.1929

Mach No. 0.203 0.203 0.203
U (ft/sec) | 1055.8 | 993.4 | 1147.3
H,0 (oy) | 0.6723 | 0.7213 | 0.4970
O, (az) | 0.0032 | 0.0223 | 0.0000
H; (a3) 0.2483 | 0.1327 | 0.4894
O (as) | 0.0030 | 0.0105 | 0:0000
H (as) 0.0313 | 0.0294 | 0.0100
OH (as) 0.0418 | 0.0835 | 0.0035

Table 3.1: ODE Results for Three O/F Ratios

A test case was chosen from many available by consultation with Carol Dexter
of MSFC [5]. The case, Run 027, had an O/F ratio of exactly 6.00, and the data
supplied by Dexter is included in the appendix.

The FDNS program requires the composition, velocity, and turbulence level of the
hot gas at the head end of the combustor, as well as the distribution of temperature
along the combustor wall. Here the complex details of the mixing and combustion
of the fuel and oxidizer are ignored; it is assumed that the hot gaseous products of
combustion enter the chamber with their initial velocity. The ODE program was used
to obtain the inlet conditions including gas composition, pressure, temperature, and
velocity. Table 3.1 gives the ODE results for O/F ratios of 6.00, 7.5, and 4.0. The
first column was used to provide the required inlet information.

The experimentally measured temperatures along the hot combustor wall were
used to specify the wall conditions. Although this is not predictive, since the wall
temperatures are being specified based on an experiment, it was considered to be the
best test of the ability of the FDNS code to determine the wall heat flux. That is, if the
exact wall temperature distribution is supplied, then any differences observed between
the computed and actual (measured) wall heat flux will not be due to uncertainties in
the wall temperatures. A spline routine was used to interpolate the data supplied by
Dexter to determine the appropriate wall temperature for each computational node
along the wall.

The unknown turbulence parameters (k, €) of the hot gases entering the combustor
was problematic. An incremental approach was adopted: beginning with low levels
of kinetic energy k, successive solutions were obtained with FDNS and the heat flux
results compared to the data from Dexter. It was found that higher values of k gave
the best results; however, convergent solutions could not be obtained for k > 0.10U%.
Hence, the level of turbulence at the inlet of the combustor was fixed at k = 0.1U2.

The results of the FDNS computation are shown in Figure 3.5. As can be seen,
the FDNS results are double those obtained by calorimetry. Note, however, that the

14
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general trend is captured well by FDNS. This indicates that the heat flux predictions
from the code are qualitatively correct.

3.3.2 P&W Predictions

As a final benchmark of the FDNS code, the analysis for the 40K Nozzle (with film
cooling) was performed, using the constant wall temperature of 1060R. This value
was suggested as reasonable by P&W, and was the value used in their computations
prepared for and distributed at the CFD consortium meeting in January, 1992. The
original data supplied by P&W are shown in the Appendix.

Figure 3.6 shows a comparison of wall heat fluxes for the constant wall temperature
case, with T, = 1060R. The arrows at the base of the graph show the secondary and
primary injection points. Note that FDNS predictions are slightly higher than those
by P&W, but the trend is strongly reproduced.

3.4 Summary

3.4.1 Wall Jet

Parametric evaluation of the effect of inlet conditions of the wall jet of Holden [4]
case 45 on the wall heat transfer yielded the following findings:

1. FDNS wall heat flux predictions are sensitive to velocity and temperature inlet
~ profiles.

9. Use of constant over turbulent profiles yield acceptable, but not necessarily
better, wall heat flux results.

3. Laminar inlet profiles produce unreasonable results for the wall heat flux down-

stream of the wall jet.

3.4.2 Combustor

Computation of the expansion of hot gases though a combustor in the configuration

of the P&W 10K combustor yielded the following findings:

1. Higher values of turbulence kinetic energy at the inlet of the chamber, kiniet,
resulted in wall heat fluxes which more closely match those from hot firings [5].

2. All ki values used resulted in overprediction of heat fluxes.

3.4.3 Subscale Nozzle - P&W Predictions

Computations for ilm cooling in the subscale nozzle for conditions similar to those
used in computations performed by P&W resulted in the following findings:

16
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1. FDNS closely reproduces computations by other methods.

2. FDNS overpredicts wall heat fluxes.

18



Chapter 4

The Conjugate Problem

4.1 Background

As alluded to previously, the FDNS program computes (via wall functions) heat fluxes
corresponding to given wall temperatures. In order to have any type of predictive
capability a means for determining the correct wall temperatures must be available.

The wall temperatures and corresponding heat fluxes are obviously not indepen-
dent, but depend on the interaction at the wall surface between the hot gases flowing
inside and whatever cooling mechanism is supplied on the back side of the wall. The
task of simultaneously determining these two interface conditions, wall temperature
and heat flux, based on complete specification of thermal boundary conditions on
both sides of the wall, is known as a conjugate heat transfer problem.

(In the conceived Gas Generator Engine nozzle, the backside cooling will be sup-
plied by partially combusted fuel flowing through channels parallel to the hot gas
flow. In the 40K test article, the cooling will be supplied by water flowing through
a calorimeter jacket. The 39 water cooling channels are cut perpendicular to the
hot gas flow, so that the cooling water will low circumferentially around the nozzle.
Although this is drastically different from the flight article, this concept was chosen
to allow for qualitative comparison of nozzle wall heat fluxes in the presence and
absence of injected film coolant. [t should be emphasized that the wall temperatures,
and resulting heat flures, are strongly dependent on the backside cooling mechanism.)

In order to achieve a prediction for the wall temperatures, so that the heat fluxes
could be obtained from FDNS, the conjugate heat transfer problem was solved it-
eratively by decoupling and matching conditions at the wall interface. This was
accomplished by treating the wall heat flux as being fully one-dimensional at each
location of the coolant channels, and applying simple heat exchanger theory to each
coolant channel.

4.2 Theory

Figure 4.1 shows a single circumferential cooling channel above and below is the “heat
exchanger model” of one such channel. At each axial location z, the heat flux was

19
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assumed to be given by the heat exchanger relation .
¢'=q/A=UATLy (4.1)

where U is the overall heat transfer coefficient, described by

1 1 Az |7
UA= —— = . 42
£ Ron {thl P kAw] (4:2)

In this relation, Ay, is the usual heat transfer coefficient for water flowing in the chan-
nels, and A;,; is the surface area of one-half of the channel; Figure 4.2 shows the
resistance concept for computation of the overall heat transfer coefficient U, along
with some of the pertinent nomenclature. The area A;; is consistent with the as-
sumption that all the heat flow absorbed from one side of the channel. The required
heat transfer coefficient can be computed if the water flow rate and average water
temperature are known for each channel. The heat transfer coefficients were obtained
from the Dittus-Boelter equation:

Nu = 0.023Re’®#Pr%*. (4.3)

Here, both Nu and Re are based on the hydraulic diameter of the rectangular water
flow passage. The second term in Equation 4.2 is the conduction term, and depends
on the wall thickness Az and the thermal conductivity & of the Inconel 625 nozzle
liner material. A, in this equation is the circumferential area of the landing below
each cooling channel.

The water flow rates which were needed to compute the heat transfer coefficients
were taken from drawings supplied by Pratt. These flow rates, and there axial loca-
tions, are shown in Table 4.1 below. There are two sets of water flow rates: the high
one is for use during hot firings with no film coolant injection; the lower flow rates
will be used when film cooling is used. Note that for each channel, the flow is divided
at the inlet of the calorimeter jacket, and is reunited at the exit manifold (see Figure
4.1). This means that, for computing the heat transfer coefficients for each channel,
‘only one-half the flow listed should be considered.

The term ATya in Equation 4.1 contains the wall surface temperature and this
equation is what facilitates the uncoupling and iterative solution of the conjugate
heat transfer problem. ATpy is defined for a heat exchanger as the temperature
difference at one end of the exchanger less the difference at the other end of the
exchanger, divided by the natural logarithm of the ratio of the same two temperature
differences. For the calorimeter jacket, each channel is modeled as a “heat exchanger”,
and the wall temperature at each z location is assumed to be constant around the
perimeter of the nozzle. The lower portion of Figure 4.1 has the nomenclature. The
temperature T, must be determined for the given heat flux. For a constant wall
temperature T, the log mean temperature difference AT is given by

(Tout - Ti )
In[(Tows — Tu) / (Tin = Tw)}’
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ATy = (4.4)



Channel | Axial Location | Low Flow | High Flow
Number inches Ib/s Ib/s
1 7.057 0.255 1.000
2 7.557 0.255 1.060
3 8.057 0.255 1.095
4 8.557 0.255 1.100
5 9.057 0.270 1.100
6 9.557 0.280 1.083
7 10.057 0.300 1.055
8 10.557 0.325 1.020
9 11.057 0.360 0.980
10 11.557 0.400 0.940
11 12.057 0.400 0.870
12 12.557 0.400 0.820
13 13.057 0.400 0.780
14 13.357 0.400 0.735
15 14.057 0.400 0.695
16 14.557 0.400 0.660
17 15.057 0.400 0.620
18 15.557 0.400 0.600
19 16.057 0.400 0.565
20 16.537 0.400 0.540
21 17.057 0.400 0.520
22 17.557 0.400 0.500
23 18.057 0.400 0.480
24 18.557 0.400 0.460
25 19.057 0.400 0.447
26 19.557 0.390 0.432
27 20.057 0.380 0.420
28 20.557 0.370 0.405
29 21.057 0.360 0.392
30 21.557 0.355 0.381
31 22.057 0.340 0.378
32 22.557 0.340 0.362
33 23.057 0.330 0.355
34 23.337 0.320 0.345
35 24.057 0.315 0.338
36 24.557 0.310 0.330
37 25.057 0.300 0.320
38 25.557 0.295 0.315
39 26.057 0.290 0.305

Table 4.1: Water Flow Rates
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The final relation needed to complete the decoupling is the temperature rise of
the cooling water. This is the same as the equation which would be used to process
the data from the calorimeter; that is

q= q”A = mcp(Tout - Ti ) (45)

4.3 Procedure

The procedure for the iterative solution of the conjugate heat transfer problem can
now be outlined:

1.

(o3

For the current distribution of wall surface temperatures, use the FDNS code
to solve for the hot gas flow through the nozzle. An output of this solution is
the wall heat flux corresponding to the given wall temperatures.

Based on the heat fluxes from step 1, use Equation 4.5 to compute the temper-
ature rise of the water for each coolant channel.

Based on the water flow rate and temperature rise, determine k,, via Equation
4.3.

Compute the overall heat transfer coefficient UA (Equation 4.2).

. Compute the wall temperature T, using the current heat flux by combining

Equations 4.1 and 4.4.

. When the wall temperatures are sufficiently close to those used in step 1, STOP.

Otherwise, return to step 1 and repeat using the newly computed wall temper-
atures.



Chapter 5

Task 3: Computed Results

As mentioned earlier, the results of the chamber analysis were used to establish the
inlet condition to the calorimeter jacket. However, the results from the analysis of
the chamber as used for test 027 could not be used directly, owing to modifications
which are to be made to the chamber to accommodate the 40K nozzle. Specifically,
before the nozzle will be mounted to the chamber, 1.500” will be cut from the head
end of the combustor, and the tail end will be trimmed so that the overall length is
21.90”. A new grid was generated corresponding to these modifications, and another
analysis performed. All other conditions were held fixed: O/F=6.0, P. = 17751b/in?,
kinee = 0.1U%, and the same wall temperature distribution was impressed on the
chamber wall as that reported by Dexter [5]. The results from this analysis were used
as entry conditions to the 40K nozzle.

Lack of specific information about the cooling of the subscale nozzle outside of the
range of the 39 coolant channels led to the adoption of ad hoc assumptions to facilitate
the decoupling approach to the conjugate problem described earlier. Specifically, the
entry to the nozzle is at axial location z = 4.90”, and the first coolant channel is
located at z = 7.057”. For the no film cooling case, there will be no active cooling
in this intermediate region; only radiative cooling to the atmosphere surrounding the
test stand. For the film cooling case, there will be some back-side cooling provided
by the coolant flowing though the nozzle manifold assembly. However, both of these
scenarios present physics which cannot be easily incorporated into the framework of
the decoupling approach to the conjugate problem outlined previously. As a patch to
the solution methodology, the following simplifying assumption was made: the wall
temperature varies smoothly and quadratically from a fixed temperature at z = 4.90”
to the level of temperature at the first coolant channelat z = 7.057”. This assumption
allowed solutions to be obtained based on the previously outlined methodology.

5.1 No Film Cooling Case

The decoupling procedure described previously for solution of the conjugate problem
converged quickly (in about four iterations). In this case, it was assumed that the wall
temperature at the end of the chamber/beginning of the nozzle corresponded to the
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same temperature as that measured by Dexter [5]. A quadratic interpolation scheme
was used to fill in the missing temperature values up to the first cooling channel. The
temperature was matched at the first cooling channel with an arbitrarily assumed
zero slope.

The results of the iterations are seen in Figures 5.1 and 5.2. There are some non-
physical oscillation in the heat flux in Figure 5.1 which are caused by too coarse mesh
spacing upstream of the expansion at the (inactive) primary injection. From Figure
5.2, it can be seen that the maximum wall temperature is about 2200R, with an
average wall temperature of about 1750R. This corresponds to a maximum heat flux
(in the coolant channel section) of 750 Btu/ft?/s (see Figure 5.1) , with an average
wall heat flux in the coolant channel section of about 650 Btu/ft?/s.

5.2 Film Cooled Case

The film cooled case used hydrogen gas supplied at ambient temperature (assumed
530R) at a pressure of 285 psi. Assuming isentropic expansion of the gas from the
reservoir to the M=1.42 primary exit results in a static temperature of 376R, a static
pressure of 86.2 psi, and a velocity of 5145 ft/s at the injector exit. For the exit area
of the injectors, this corresponds to a mass flow rate of 0.02 1b/s for each injector, or
a total flow rate of 2.68 Ib/s for the 135 injectors. g

Secondary coolant is supplied upstream of the supersonic film injectors to protect
these nozzles from the hot gas flow. For an isentropic expansion to M=1, the tem-
perature of the injected secondary coolant was 442R, and its velocity was 3905 ft/s.
This corresponds to a mass flow rate of 0.50 Ib/s for the secondary. The total flow
rate simulated was 2.68 (primary) + 0.50 (secondary) = 3.18 Ib/s.

A different set of ad hoc assumptions were used to substitute for inadequate knowl-
edge of the backside cooling associated with the film delivery system. It was assumed
that the temperature of the wall at the point of the secondary injection (the begin-
ning of the nozzle section) was the temperature of the injected gas, about 520R. It
was also assumed that the temperature of the wall at the point of the primary injec-
tion was the temperature of the cooling gas at this location, about 372R. Between
these two stations, a “pseudo-adiabatic” condition was imposed through the iterative
solution by forcing the wall temperature to equal the neighboring gas temperature.
Between the primary injection and the first coolant channel, a quadratic variation of
temperature was again used. Two different assumptions about the slope of the T(z)
function were tried: zero slope and constant slope based on the calorimeter jacket
section.

The decoupling procedure for the film cooling case was non-convergent in this
case. This is due to the inability of the simplistic quadratic interpolation procedure
to substitute for the incomplete description of the physics. Figure 5.3 shows the last
three iterations for the film cooled wall. The dashed lines are the temperatures and
the solid lines are the heat transfer rates. The non-convergence is evident. Note,
however, that all the solutions give similar results in the water calorimeter channel
section where complete information on the backside cooling was available. It was
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apparent from the iterative process that a fixed number of candidate solutions had
been exposed, as a repetitive cycle of solutions began to occur. Most of these could
be dismissed on grounds of non-physical behavior. The solution from iteration 13 was
deemed most plausible and will be considered correct for purposes of comparing with
the uncooled wall case. For this case (iteration 13), the maximum wall temperature
(in the coolant channel region) was about 1100R. The average temperature in this
section was about 1050R. The wall heat fluxes varied from a slightly negative value
(corresponding to wall cooling) to a maximum and nearly constant value of about
200 Btu/ft?/s.

Note that although the predicted heat fluxes are felt to be too high, the converged
value of wall temperature in the calorimeter section of 1050R is strikingly close to
the value suggested by P&W (see Appendix). This would tend to suggest that the
simple decoupling scheme, in conjunction with the FDNS heat fAux predictions, yields
accurate values of wall temperature, in spite of high heat flux predictions.

5.3 Comparison of Results

Figure 5.4 shows the results from the converged no cooling case with the selected film
cooling case. The dramatic difference in these results shows the advantage which can
be expected by using film cooling.

Figure 5.5 shows the color contours of temperature of the hot gas flow when no
film cooling is used. Figure 5.6 presents the temperature contours for the case where
film cooling is used. Note that for the uncooled case, the temperature contours are
nearly one-dimensional in the axial direction. The addition of film cooling creates an
annular cooled buffer at the wall, as desired, but the one-dimensional axial core is
retained.

Figure 5.7 shows the computed hydrogen concentration contours, and Figure 5.8
provides a detail of the injector region. It is clear that the injected hydrogen pen-
etrates to about 1/3 of the nozzle radius with a concentration of 0.40 or greater.
Note that the core flow, which is not affected by the film coolant, has a hydrogen
concentration of about 0.23.
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Figure 5.6: Temperature Contours with Film Cooling
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Chapter 6

Summary

1. The Reynolds Analogy-based wall function gives reasonable, but not accurate,
estimates of the wall heat flux downstream of a wall jet.

9. The predictions obtained depend on the velocity and temperature profiles of
the fow at the injection. However, uniform profiles give as good agreement as
any other assumption (turbulent, or laminar). Of course, actual inlet profiles
will produce more accurate results.

3. The inlet velocity profile affects wall heat flux much more than the temperature
profile does.

4. The FDNS program tends to overpredict heat fluxes, but gives excellent quali-
tative agreement with experimental data and good agreement with other com-
putational predictions.

5. For the no film cooled case, the predicted maximum temperaturein the calorime-
ter jacket section is 2200R, and the average temperature is about 1750R.

6. For the no film cooled case, the predicted maximum heat flux in the calorimeter
jacket section is 750 Btu/ft?/s, with an average wall heat flux of about 630

" Btu/ft?/s.

7 For the film cooled case, the predicted maximum temperature in the calorimeter
jacket section is 1100R, and the average temperature is about 1050R.

8. For the film cooled case, the predicted heat flux in the calorimeter jacket section
varied from a slightly negative value to a maximum and nearly constant value

of about 200 Btu/ft?/s.

9. The simple decoupling procedure applied to handle the conjugate heat transfer
problem yields results for the cooled nozzle liner temperature in agreement with
values suggested by P&W. With more accurate information about the backside
cooling, this procedure could be used to predict wall temperatures in other film
cooling applications.
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P242- 027 t= 15.035
P1088 - \ 14!
TCA Pc P1083- 1146 ave.= (350 +15= 375
P1090 - 366
Wall Static Pc P1093 - {110
Ploay - 1335
LOX SYSTEM
TANK P0001 - 3116 T0077 - —266
VENT P1004 - 3073 T1001 - -263
P1005- 3069 Ave.= 30F +15= 3086 T1006 - -26 (
VALVE P1062 - 1933
LOX DOME P1060- (503 u, (g7 + 157 1843 T1076- -310 (BAD)
P1061 - |53

VENTURIDIA. = .4872 A=.(BsU Cd= .96

wiCdA=  298.0 © P: 3080, - -262
wlox=  298.0( /864)(.96)= 53.33 _

- H2 SYSTEM

TANK P0002 - 3330
GH2 MIXER INLET P1001 - 3330
MIXER INLET P101T - 3249

MIXER OUTLET P1037 - 3320 ; T1004 - -26Y4
T1014- =232
VENT IN P1006 - 3236 T1012- -267

P1007 - 3267 Ave. = 3252 +15= 3267
VENT OUT P1035 - 2009
FUEL MANIFOLD P1073- 1418 BED (-262)
FUEL CAVITY P1091 -1439 ] T1075 - A -
mgz_ﬂqqzs Gyt + 15 = 1956

VENTURIDIA. = . 533 A=, 2669 Cd= , 948

wCdA= 34,4 @ P- 3267, T--267

wH2 = 34.4 (,2669)(.968) = & 89

OF= 53.33/8.89 = 400

ct= [175(322)(83725) /53,33 + g 89 = 7690.9
nC = 7690-q

36



2500

J

2592 | G¥E€ [ L¥S | 62 | SL | 1§l e 00141 8CF | €tbZ | ¥9200 | O2
7622 | 8E€ | GG | ©ect | evL | Zvt | BEE€ | 1G00 | ZvOiL | 028€ |€20ld | EVE [olokd | ZEL | 901°ZL | G900 | 6}
veic | GZ€ | 96G | Gt | ¥GL | cvl | S2E [ 600 [260KL 9l TvZ | 69200 | 8l
G892 | Get | 886 | cvEl | ¥GL | vt | Ge€ | 6¥00 [ZOLLL GEL | 9Kt L | 69200 | ¢
3082 | GVE | 698G | vver | O9GL | 0GF | GVE | 2500 |GPOIL | ¥1ZE [0204d | EVE | 9203 | +EL TvZ | 69200 | 91
8GZe | ¢GE | 8GG | LOEL | 6vL | ¥Si 26t | €600 165011 €El | €FtZ | ¥9200 | SI
FHaH [ SGE |[HHRH 261 | eGE | €500 |02hiL 2€L | G60°Z | 99200 | vt
redA) [ BTPE 1 G0E | G¢0 | 890G | 2v. | t€v | GOt | 9v00 |cvOrL | 806C [cvOid [ GO'E [ 61014 | G2k | 24 | 89200 | €1
redAi[2o1E | 6G% | ved | L6et | £GL | €61 | 641 | ¥200 [6¥0LL €2l | ¢6LE | G6000 | ct
redhki{zzic | BvE | Z¥5 | VIEL | P9L | €61 | 8FE | 8¥0°0 | B60LL OCL [ 86€9 | 6100 | It
1982 | ¢6€ | 265 | 606t | LGL | 02 | ¢€€ | SO0 [ 16041 . 621 | 86£9 | 6100 | OF
60Z2 | SOE€ | 895 | €€er | GOZ | 98r | GOt | 9v00 |90kiL | G¥eE (2i0Id | ¥OE [G20Kd | 821 [ 86€9 | 68100 [ 6
VEGe | 6L¢ | €85 | ¥es | 2GZ | OZF | 6L2 | cv00 [20HiL 12t | 60v9 | 68100 | 8
redhk [ 8E6Z | €6t | ©ZG | Bkt | GGL | vO2 | ¢€€ | GO0 |eSOiL Si1 | cov9 | 88100 | Z
vGeZ | 2hE | €9y | ccet | 697 | 16k | et€ | Z¥00 |SHIIL Git | co¥9 | 88100 | 9 ¢
7r8L | G9¢ | @ty | G6it | ZGZ | €91 | S92 | vOO |€GOLL | GvEw | viOld | €92 [ Z0OKd | vel | G6E9 | 88100 | G .
rodh1[ 0002 | ecE | ZaE | cvit | SGZ | vO2 | 2€€ | SO0 [.460L1 €Ol | 66€9 | 88100 | ¥
roedAi[#R##H| CIlE (HEHK 061 | et | Zv00 | }GOIL 88 | 96€E9 | 68100 | €
redAi[€LZ | el | 6GF | v06 | GvZ | Z8L ] cit | L¥00 [G80LL 18 %9 | 26100 | ¢
€Sl | Se€ € €6, | €92 | 961 | G¢E€ | 6¥00 [SOMIL 98 | 6869 | 16100 | |
pajeds| L 0=t 1€ ER ON |J1JO | ON | W/3 | ON ON FAT] Zur  |[ON
v/0 m |eieg{1noL| L A | .M M |dWN3L| d [SS3ud| M W/i4 | 1110 | SV | moy | HD
02€L 11011 GEOGL =1 96Ey = ¥G01d
062, -0i0LL 120-2v2d 66cy = Goid Zovy = 1501d
£20-2¥2dM0°  NLIHM LLvHd



r adA1

r adA)
r adA)

2662 | 6/¢C 98t | LGi Vi 1e 6L'¢ Zv0'0 | 06011 S evoe | 25100 | OF
SO'IE | G8°¢ vov | 6GLL | 8GL | Ll2 | 4§82 €r00 | 2ILIL il £89°€ | 25100 | 6€
9geZ | ¢l¢ 1oy | 8911 | 29L | 802 | 2L¢ T¥00 | vLLiL | 060E | S20Ld | 022 | 6204d | Z91 vILE | 1GIO0 | 8E
092 | ¢6¢ GGE [ 62t | vLL | 2dd ¢6¢ ¥PP0'0 | 68011 991 €GL'E | 25100 | LE
o182 | 86°¢ 9GE | 2CElL | 94 | L2 | 86¢ Gv00 |G2hiL | 9282 [£20ld | 262 | £20Ld | SSI I8L'E | 26100 | 9¢
1092 | 6L¢ veE | vl LL e | 6L¢ 200 | 66011 | v862 | ¥#2Oild | ¥8'C | 8201d ol €8.€ | ¢S100 | SE
0292 | 6£¢ 9E 92t | 992/ | 002 | 6L¢ 2r0’0 | ¥60LL €Lt 828t | 19100 | ¢v€
LELe | s8¢ LE LELL | L9L | v02 | S8¢ ty0'0 | 880LL el GGg'e | 19100 | £t
ve've | 6L¢ G¥e | LI | 992 | 002 6L¢ Z2r00 | 9¥0LL | QOLE | SiI0ld | 6£°C | S00id (7 698°€ | 19100 | ¢E
1962 | s8¢ gve [ Gkl ] 29, | v02 | s8¢ €00 | 1ILL L2l 9.8'€ | 19100 | IE
gi've | ¢6¢ €2t | v'60l Vi [ €E1e | ¢6e ¥¥0°0 | 95011 ¥01 868t | 85100 | OF
9€'ve | 69¢ got | €CLL | G9L | 68t 65'¢ 6600 | vPOLL | Z81€ | LIOMd | £¥2 | £E00L3 | 601 LO6E | BG10°0 | 62
GeeZ | el G9E [ Lell | 292 | 002 { ¢Le 1v0°0 | ¥CIIL 801 GI6E | L5100 | 82
L1086 | 2L geEy | 67411 | 9L e | eLe 1$0°0 | 0G01L Lt €06'E | 96100 [ L2
01’62 | 2LE G0G | 6621 | ¥SGL | ¥¥i 2Lt GO0 |€E60LL | €28 | 120id | Ov'E | 200Ld | 251 2.9'9 | §9200 | 9¢
L¥Sse | 2EE 9¥s | 9621 SL 144" eee S00 |80iI1 161 L, | 99200 | &2
lSve | 2t .25 | €821 | 9GL | vrl FA> G00 |8¥OLL 0s1 pil'L | 69200 | vC
GZ0E | BEE 9't9 LEL vEL | Lvi w.o.n 1600 [OkHIL 6v1 L2 | 69200 | €2
Gb9Z | GVE SvS | 9621 V'L | 0St Sv'e <G00 | 98011 | ¥1ZE {v¥OLd | BY'E | 1c0Ld | Ovl L0V, | §9200 | 22
6,08 | GC€ v'.9 | Z6EL | &L | 2vi Gt 6v0°0 | EvOLL 194 €L | ¥9200 | 12

pajeas 1 0=l ie 8seq ON | IO | ON W/d ‘ON ON ¢yl cut ‘'ON
v/OD M elag | 1NOL 1 oA oM A dW3l d [SS3ud} M W/d o sy molv | HO

£20-2¥2d M0 NLIHM 11vdd

38



r edA)

r edA)l
r edAy

EE T T IvE T80T | 200 | 2ec | Sev | ¥900 |92TiL T | vobe | 25100 | 09
ST TS T oIE T o011 | Vel [ 292 | 26¢ | €500 |vG0IL | 0vGZ | veEOid | 8G¢ | 8003 [ ZE [ €922 | SSHO0 | 65
sToc T 166 1 562 | 9800 | V6L | 662 | 16€ | 6500 |C€eiiL | 1212 |Ce0ld | S6€ | €20id | 69 | Slce | €SO0 |65
g [ 16€ | €6 | 12l | V6L | 682 | 16€ | 6500 |€60rL , 29 | 952 | 25100 | 5
ST55 1 6ot | Gec | vorr | 6ZL | €92 | S9€ | G500 | tertL | G592 |ce0rd | 99¢€ [ vI0d | S€ |9z | 9100 | 9§
=09 1 Sac | 60v | 0611 | 8L | 2Lz | S8 | 8500 |090IL | 25vc |B20id | 6LE€ | 600id | 99 | v09Z | €9100 [ SS
Sec T 5ov 666 [ 6Li1 | 67 | €62 | S0V | 1900 [t0riL | ¥ocz |Ot0ld | 60% | €0id | 08 | 692 | S910°0 | ¥S
SoeG | 8Z€ | viv | G611 | V8L | 092 | 8Lt | 4500 |EOFIL ZL | Z62¢ | 89100 | €5
seec T 860 1 S6c (L | 6 | ZZZ | §6€ | 000 |Z001L | 962 |O0E0id | v6€ | 02014 | OL | vZ8¢ | 99100 | &5
5C05 | 66 | GZc | vOVl | 68 | GIZ | 86€ | 900 |990FL §Z | €962 | 29100 | 16
57 |66 T Tz | 6617 | 98 | 992 | 16€ | 66000 | 96011 | ccec | 1v0vd | 06¢€ [ 81014 | eL | vOE | £100 | 0S
V96 | 86C | 2w | Z22V | GBL | S92 | 86€ | 900 |ZGOIL 62 | SI1 € | €100 | 67
ST T &oe T E6h | 005 [ 69 | 162 | S9€ | 5600 |6riiL | 669¢ |Be0id | 1G€ | Zb0id | ZF | ¥6I€ | 891000 | 8%
Seor T See T I T veil | 78, 1092 | S8¢ | 8500 |2eiil | Occe |810id | 98€ | €103 | ¥E | 992€ | HZIOO [ Z¥
o505 T 126 296 [ oviv | v8L | 252 | 1Z€ | 9500 |GG0iL | £2G¢ | vEotd | OLE | 910Kd | 16 | 8ee€ | 100 | o¥
GEZC | G9€ | OVE | LTIl | G8L | v6Z | S9E | G500 |OFFIL 9 | 6ZEE | 99100 | Gv
o T2 T 66 [ el | 8L | vvZ | 25€ | €600 |FOITL | 645 | 6101d | €G€ | VOOId | OE | 9vvE | 99100 | vp
v | 66€ | ZSC | vEll | £ZL | vee | 8c€ | 1500 [ZBOVL 6€ | €0S € | 9100 | €v
v [ 8re | v8c | €Git | ¢4 | 612 | 8LE | 8¥00 | G60LL €91 [ 9SG € | 89100 | ¢¥
SFTe T 2re | L96 | 7%i1 | ¥ZZ | €12 | 2vE | Zv00 |6OILL | Svae | 920td | 0Z€ | OEOKd | €S+ | 9€ [ 69100 | Iv

paless| 1 0=1 1® 3seq ON | T170 | ON | W/4 | ON | ON | eul | eul |ON
vio | » lewsg|mor| L |oAaf .m M |dwaL| d [ss3ud| m | wid | 1o | sv | moyv | O

120-292d M0 NL1IHM L1VHd

39



r edA]

r edA}
r edA)

r ed&)
r edA}

ove [ 59z | 66 [ 66T | 8% [Eir | 602 | ¥00 |vBOIL | 206t | GpOId | 202 | 220td | 0Lt |8icel| 14200 | eL
ZT00 | 662 | £Gv | g%ar | V9. | Off | 652 | 6600 |e80il 691|129 1T | 12200 | 12
§66 | 202 | LZE | oiiv | vvL | vit | 2¢ | w00 [ 180iL 89T | €601 | 92200 | 0L
§C01 | 262 | 796 | 6011 | SbL | 021 | 262 | vvOO |ZIiiL | 086€ |2c0ld | 882 | »00Ild | ZOT [Z2eO1 | 18200 | 69
GOIT | 26¢ | §8c | GE€vl | Z¥L | 6Ll | 262 | »p00 | 190IL BIT | 5256 | €68200 | 89
95Z1 | 262 | v | VeIl | Z¥Z | €01 | 25¢ | 8600 | Iv0FL Ii1 | 8680 | 26200 | 29
Z0bT | 602 | Tiv | 661 | 8pZ | €1t | 622 | 2v00 | S901L | 168E |€v0id | G8Z | G10Id | OZF | BCr8 | S8200 | 99
7702 | 8% | 228 | L1117 | S6L | €62 | 85v | 6900 |v90IL S1 [ 960Z | 22200 | 69
ST T & | 16 [ veol | ZZZ | €cz | 1S¥ | 8900 | GBIVl | vOSZ |6601d | t»¥ | cv0td | 85 | G829 | €2200 | v9
650 T IS [ viz [ vior |08 [ 992 | ZrG | 8200 |8S0IL SV | 8265 | 92200 | €9
NHEN| 81 |RRFF ZIE | 8Iv | €900 |CHitL T2 | 680€ | 25100 | 29
5082 17968 |02 | vool | vo8 | GOE | 86€ | 900 |C90rL | veGl [620id | 60% | v10i4 | 12 | cese | Gtoa | +9
paeds | 1L 0=1 18 B58q ON | 1110 | ON | W/d | ON | ©oN | eul Zul [ ON

vio | m feqeg|inor| L [oA | .m ¥ ldwar| d |ssaud| m | wid | 110 | sy | mouv | +O

£120-2¥2d HO NLIHM LLVHd

40



P& W 40K Subscale Calorimeter Chamber and Heat Flux Data

Channel | Axial Wall | Land | No.of | Passage | Surface | Surface | Test 027C | Test 027C Test 027C

No. |Location| Radius | Width | Passages} Width | Width (1)]| Area(2) Q/A Q Wall Temp (R)

1 -16.702 | 2.8291 | 0.1078 2 0.0719 | 03594 6.39 1.5 9.58 582
2 -16.342 | 2.8291 | 0.1082 2 0.0721 | 0.3606 6.41 7.7 49.36 757
3 -15.982 | 2.8291 | 0.1085 2 0.0714 | 03598 6.40 11.2 71.63

4 -15.622 1 2.8291 1 0.1086 2 0.0714 0.36 6.40 147 94.07

L -15.262 | 2.8289 | 0.1089 2 0.071 | 03598 6.40 182 116.39 1048

6 -14.902 | 2.8287 | 0.1093 2 0.0708 | 03602 6.40 2258 144.04 1138

7 -14.542 | 2.8286 | 0.109 2 0.0711 | 0.3602 6.40 239 153.00

8 -14.182 | 2.8287 | 0.109 2 0.0713 | 0.3606 6.41 253 162.15 1230

9 -13.822 | 2.8284 | 0.1087 2 0.0713 0.36 6.40 271 17338 1259
10 -13.462 | 2.8284 | 0.1081 2 0.0719 0.36 6.40 286 182.97 1282
11 -13.102 | 2.8286 | 0.1081 2 0.0719 036 6.40 S 272 174.03 1255
12 -12.832 | 2.8288 | 0.1075 1 0.0721 | 0.1796 319 274 87.47

13 -12.532 1 2.8287{ 0.1053 2 0.1021 | 0.4148 737 274 202.00

14 -12.127 | 2.8287 | 0.0983 2 0.1013 | 0.3992 7.10 274 194.41

15 -11.727 ] 2.8286 | 0.0994 2 0.1007 | 0.4002 7.11 276 196.31 1292
16 -11.327 ] 2.8289 | 0.0989 2 0.1011 0.4 7.11 28.5 202.63 1320
17 -10.927 | 2.8287 | 0.0989 2 0.1013 | 0.4004 7.12 268 190.72 1289
18 -10.527 | 2.8291 | 0.0986 2 0.1014 0.4 7.11 272 193.40 1259
19 -10.127 | 2.8289 | 0.0987 2 0.1012 | 0.3998 7.11 274 194.71 1294
20 -9.727 | 2.8289 | 0.099 2 0.1011 | 0.4002 7.11 265 188.50 1269
21 -9.327 | 2.8287 | 0.0989 2 0.1012 | 0.4002 711 26.5 188.49

22 -8.927 | 2.8293 | 0.0984 2 0.1015 | 0.3998 7.11 26.5 188.34 1265
23 -8.527 | 2.8293 | 0.0982 2 0.1018 04 | 711 25.55 181.68

24 -8.127 | 2.8292 | 0.0983 2 0.1018 | 0.4002 7.11 246 175.01 1226
25 -7.727 | 2.8291 ] 0.0982 2 0.1018 0.4 7.11 25.2 179.18 1205
26 -7.327 | 2.8288 | 0.0859 2 0.1018 | 0.3754 6.67 25.85 172.48

27 -7.041 | 2.8289| 0.05 2 0.0598 | 0.21%6 3.90 26.5 103.44 1140
28 -6.821 | 2.8272 | 0.0498 2 0.0604 | 0.2204 392 258 101.01 1125
29 -6.601 | 2.823 | 0.04%4 2 0.0607 | 0.2202 in 245 95.69 1100
30 -6.381 | 2.8162 | 0.0492 2 0.0609 | 0.2202 3.90 258 100.53 1116
31 -6.161 | 2.807 | 0.0478 2 0.062 | 0.2196 387 253 97.99 1110
32 -5.94]1 | 2.795 | 0.0478 2 0.0622 022 3.86 267 103.16 1145
33 -5.721 | 2.7803 | 0.0477 2 0.0624 | 0.2202 3.85 26.6 102.32 1139
34 -5.501 | 2.7632 | 0.0476 2 0.0623 | 0.2198 382 26 99.22 1131
s -5.281 | 2.7434 ] 0.0502 2 0.0591 | 0.2186 i 26.6 100.23 1141
36 -5.061 | 2.7208 ] 0.0509 2 0.0591 0.22 3.76 279 104.93 1158
37 -4.84] | 2.6966 | 0.0509 2 0.0592 | 0.2202 313 30.6 114.17 1212
38 -4.621 | 2.6697 | 0.0507 2 0.0592 | 0.2198 3.69 28.7 105.82 1177
39 -4.401 | 2.6393 { 0.0505 2 0.0595 022 365 309 112.73 1214
40 -4.18] | 2.6062 | 0.0505 2 0.0595 0.22 3.60 295 106.28 1190
4] -3.961 } 2.5705 | 0.0505 2 0.0595 0.22 355 318 112.99 1117
42 -3.741 | 2.532 | 0.0507 2 0.0594 | 0.2202 3.50 341 119.46 1152
43 -3.521 | 2.4909 | 0.0508 2 0.0592 ! 022 kR 345 118.79 1148
4 -3.301 | 2.4468 | 0.0509 2 0.059 | 02198 138 36.2 12232 1169
45 -3.081 | 2.4002 | 0.0505 2 0.0591 | 0.2192 33 373 123.30 1180
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46 -2.861 | 2.3507 | 0.0493 2 0.0606 | 0.2198 328 40.4 131.16 1227

47 -2.641 | 2.2984 | 0.0489 2 0.0611 0.22 318 409 129.94 1229

48 -2.421 | 22342 0.0498 2 0.0601 | 0.2198 3.09 432 133.29

49 -2.201 | 2.1853 | 0.0496 2 0.0602 | 0.2196 3.02 45.4 136.89

50 -1.981 | 2.1249 | 0.0508 2 0.0593 | 0.2196 293 477 139.85 1277

51 -1.761 | 2.0616 ] 0.0512 2 0.0587 | 0.2198 285 504 143.50 1309

52 -1.541 | 1.995 | 0.051 2 0.0586 | 0.2192 278 534 146.73 1350

53 -1.321 | 1.9254 | 0.0504 2 0.0598 | 0.2204 2.67 556 148.25 1394

54 -1.101 | 1.8531 ] 0.0511 2 0.059 | 0.2202 2.56 583 149.47 1411

55 -0.881 | 1.7771 | 0.0515 2 0.0587 | 0.2204 2.46 60.4 148.64 1456

56 -0.661 | 1.7101 | 0.0515 2 0.0587 | 02204 237 56.7 134.28 1410

57 -0.441 | 1.6647 | 0.0514 2 0.0589 | 0.2206 231 548 126.45 1364

58 -0.221 | 1.6391] 0.0514 2 0.0583 | 0.2194 2.26 5195 117.38

59 -0.001 | 1.6336 ] 0.0516 2 0.0586 | 0.2204 2.26 49.1 111.08 1302

60 0.219 | 1.6897| 0.05] 2 0.0587 | 02194 233 436 101.56 1214

61 0.439 | 1.8069 | 0.0503 2 0.0598 | 0.2202 2.50 28.1 70.25 1006

62 0.659 | 1.9342 | 0.0504 2 0.0596 0.22 2.67 2435 65.10

63 0.939 | 2.0967 | 0.058 2 0.0597 { 0.2354 3.10 20.6 63.88 953

64 1.309 | 23112} 0.0654 2 0.0594 | 0.2496 3.62 184 66.69

65 1.684 | 2.5286 | 0.0686 2 0.0602 | 0.2576 4.09 16.3 66.71

66 2.0865 | 2.7618 | 0.0896 2 0.1133 | 0.4058 7.04 14.1 99.29 1042

67 2.4925 | 2.9972 | 0.0907 2 0.1123 0.406 7.65 127 97.10 1002

68 2.8985 | 3.2324 | 0.091 2 0.1119 | 0.4058 8.24 119 98.08 973

69 33045 | 3.4679 1 0.0906 2 0.1124 | 0.406 8.85 10.4 92.00 940

70 3.7105 | 3.7036 | 0.091 2 0.1121 | 0.4062 9.45 9.4 88.85 929

71 4.1165 | 3.93%4 | 0.091 2 0.112 0.406 10.05 89 89.44

72 4.5225 | 4.1749{ 0.091 2 0.1121 | 0.4062 10.66 8.4 89.50 92§
Total Q (Btu/sec) = 9095.67

Q (Btw/sec) to Throat = 8007.2

Note I: Surface width = No. of passages (land width + passage width)

Note 2: Surface Area = 2 pi (surface width)(wall radius)
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- Appendix B: P&W Data
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